§ PLUG-IN TRANSDUCER § 1 OUTPUT TYPE

DC POWER RANSDUCER

DC POWER TRANSDUSER

DWP1 -

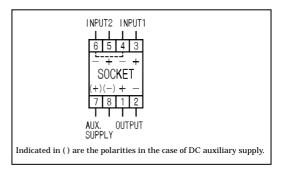
Use

Outputs a DC signal in proportion to DC power in an electric power system.

Features

1. High noise rejection ratio both in normal mode and common mode.

- 2. Because the product makes various kinds of outputs such as a DC current signal for industrial instrumentation, it can be used as a direct input to a computer or other industrial instruments.
- 3. Withstand voltage between electric circuit and outer case, input/ output and auxiliary supply is AC1, 500V (50/60Hz), complete insulation for 1 minute, or AC1, 500V (50/60Hz) for 1 minute between input and output.
- 4. ⊖ of voltage input 1 and the ⊖ of current input 2 are conducted inside the product. Make sure the connection is a minus common.
- 5. Impulse withstands voltage 5kV, 1.2/50µs (between electric circuit and outer case), and positive/ negative polarity 3 times each is guaranteed.


Specification

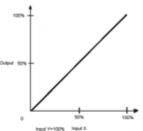
DWP1-100F2

 $(80 \times 50 \times 121 \text{mm}/350\text{g})$

Connection diagram

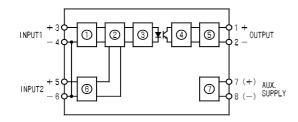
Power	Power input 1 (input resistance)	Power Input 2 (input resistance)	Output (load resistance)	Auxiliary supply
 K=1 When Voltage V × Current A= Power W Product which full power= 100% output other than those above [other than K = 1] *Range of intrinsic sensitivity Power W = K (voltage V × current A) K = 0.6-1.2 	A: DC0-100mV (approx.1M) B: DC0-1V (approx.1M) C: DC0-5V (approx.1M) D: DC0-10V (approx.1M) D: DC0-10V (approx.1M) D: other than those above *When using primary voltage as a direct input, voltage which is more than 100V but less than 600V needs an external box DM-1 as □V/1mA. C: of input 1 and input 2 the product.	I : DC0-1mA (approx.100) 2 : DC0-5mA (approx.100) 3 : DC0-10mA (approx.100) 4 : DC 0-20mA (approx.100) 5 : other than those above [In the case of a shunt input] "It is 50mVMIN in the case of a shunt input. 2 are conducted inside	$\begin{array}{c} 1 : DC0-100mV (200) \\ \hline 2 : DC0-1V (200) \\ \hline 3 : DC0-5V (1k) \\ \hline 4 : DC 0-10V (2k) \\ \hline 5 : DC1-5V (1k) \\ \hline A : DC0-1mA (10k) \\ \hline B : DC0-5mA (2k) \\ \hline C : DC0-10mA (1k) \\ \hline D : DC0-16mA (600) \\ \hline E : DC1-5mA (3k) \\ \hline F : DC4-20mA (750) \\ \hline 0 : other than those above \\ \end{array}$	1 : AC100V±10%, 50/60Hz 2 : AC110V±10%, 50/60Hz 3 : AC200V±10%, 50/60Hz 4 : AC220V±10%, 50/60Hz 5 : DC24V±10% 0 : other than those above Common specification Tolerance: ± 0.5% Response time: 0.5sec/99% Consumption VA: AC power source:4.5V DC power source:5W Weight: AC power source:700g DC power source:350g

Open of current output: even if the current output terminal is used in a state of regular open, there is no problem. Also, a voltage of approx. 25V occurs on the output terminal.

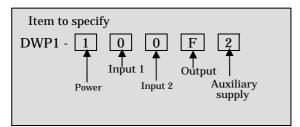

Operational expression

Maximum W (V × A = rated W) Input1: V Input2: A Output: OUT (0-100% output)

Output value = Constant number K × $\frac{\text{input V} \times \text{input A}}{\text{Maximum W}}$ × Rated output


Rated W

K : When <u>rated V</u> \times <u>rated A</u> = maximum W, K=1.


DC POWER RANSDUCER

Block diagram

Input circuit Multiplying circuit Pulse width modulation circuit Pulse width demodulation circuit Output circuit Input circuit Insulated power source circuit

Purchase specifications

